
NASA Contractor Report 194984

ICASE Report No. 93-78

' L _ ":

/" ,i/" .. ""'
_z ,- ;x {., :P St'*"

"TP "" ':'LTi__ " '/'""

L)6/?

IC A SE
A SIMPLE HYPERBOLIC MODEL FOR

COMMUNICATION IN PARALLEL PROCESSING

ENVIRONMENTS

Ion Stoica

Florin Sultan

David Keyes

HYPERBOLIC MODEL F_O_ C_iMiMUNICATION
IN PARALLEL PROCESSING ENVIRONMENTS

Final Report (ICASE) 40 p

G3/61

N95-18487

Unclas

0035842

Contract NAS 1-19480

September 1994

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

A Simple Hyperbolic Model for Communication

in Parallel Processing Environments

Ion STOICA, Florin SULTAN, David KEYES*

Department of Computer Science

Old Dominion University

{stoica, sultan, keyes}@cs.odu.edu

ABSTRACT

We introduce a model for communication costs in parallel processing environments, called the

"hyperbolic model," which generalizes two-parameter dedicated-link models in an analytically sim-

ple way. Dedicated interprocessor links parameterized by a latency and a transfer rate that are

independent of load are assumed by many existing communication models; such models are unreal-

istic for workstation networks. The communication system is modeled as a directed communication

graph in which terminal nodes represent the application processes that initiate the sending and re-

ceiving of the information and in which internal nodes, called communication blocks (CBs), reflect

the layered structure of the underlying communication architecture. The direction of graph edges

specifies the flow of the information carried through messages. Each CB is characterized by a

two-parameter hyperbolic function of the message size that represents the service time needed for

processing the message. The parameters are evaluated in the limits of very large and very small

messages. Rules are given for reducing a communication graph consisting of many CBs to an

equivalent two-parameter form, while maintaining an approximation for the service time that is

exact in both large and small limits. The model is validated on a dedicated Ethernet network of

workstations by experiments with communication subprograms arising in scientific applications, for

which a tight fit of the model predictions with actual measurements of the communication and syn-

chronization time between end processes is demonstrated. The model is then used to evaluate the

performance of two simple parallel scientific applications from partial differentialequations: domain

decomposition and time-parallel multigrid. In an appropriate limit, we also show the compatibility

of the hyperbolic model with the recently proposed LogP model.

*The third author's research was supported by the National Aeronautical and Space Administration under NASA

contract No. NAS1_19480 while in residence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

ii, _ _, _

i!ii¸
ilii_

i:i:i

ii!ii

iii!i,

1 Introduction

The goal of this paper is to introduce a uniform framework for analyzing and predicting com-

munication performance of parailel algorithms in reed parallel processing environments. We

include under "parallel processing environments" systems supporting computing both on tradi-

tional dedicated tightly coupled parallel computers (usually termed "multiprocessor systems")

and on dusters of loosely coupled workstations (usually termed "distributed systems"). How-

ever, "multitaskhag," that is, the simultaneous execution of randomly interfering parallel jobs,
is excluded.

There are two basic elements of a parallel/distributed computation: the end processes that

send, receive, manipulate and transform data and the links along which data flow, forming a

network having both structural and dynamic properties.

The issue of communication is only recently beginning to receive attention in keeping with

its importance in models of parallel computation. Most parallel models following the precedent

of [6] start with the assumption of "perfect" communication, namely no delay and unlimited

bandwidth. Algorithms based on such models may appear to be highly performant, but more

realistic assumptions [4] about the underlying communication system reveal significant degra-
dation of their behavior.

In designing and analyzing parallel algorithms, either we have to make assumptions about

the properties of the software/hardware links over which messages are exchanged or these

properties are implicit in the computational model used. The assumptions relate to the message

reliability and the responsiveness of the communication network, the following being the most
common:

A1 Messages exchanged between end processes are not corrupted.

A2 No duplicates of transmitted messages are generated.

A3 Between any pair of end processes, messages are received in the order they were sent.

A4 The delay is bounded, that is, it is guaranteed that a sent message will be delivered to the
destination end process within a certain fixed time.

The overhead of enforcing these assumptions is often not taken into account. Instant commu-

nication (implying a communication delay equal to zero) is assumed. A common idealization
is to assume that an unlimited number of processors can use unlimited bandwidth.

Besides these considerations about the theoretical approaches to parallel computing, our

approach is motivated by factors showing the increasing importance of communication in the

area of parallel/distributed computing:

The need for improving evaluation of complexity and efficiency of parallel algorithms.

Technological trends. The increasing performance and memory capacity of the processing
nodes in parallel computers and in workstation clusters [8] place heavier demands on the

communication between nodes. It is unrealistic to assume that communication is bounded

as more data are stored and processed on each node. On the other hand, technological

advances in the communication and network interface technologies come at a slower pace

than those in (micro)processor performance and increased memory capacity. This has

:i̧ :: !/i:i _ :: -• : •:r.... _ '

:/i I i!ii i̧ •̧ i•̧ iii: :i/i•ii:ilil¸ :•:/: •

!:i

• : : i/i ¸¸ • •i• ¸ :̧:i•ii •/(i_•_i•_i)• ••i•_̧ _:ii_/_:i_/II i

had and will continue to have the effect of making communication overhead the main

bottleneck for the overall performance of parallel algorithms.

The revival of distributed computing. There is an economically driven shift toward

using existing clusters of workstations in high performance distributed computing, as

an alternative to dedicated parallel computers. Over sixty publically available systems

for workstation collaboration are annotated in [18]. The communication links and the

communication software being embedded in general purpose operating systems running
on the processing nodes have distinct features that must be considered.

This paper introduces a new communication model for the evaluation of end-to-end commu-

nication costs in parallel processing environments. The computational tasks are accomplished

by end processes that communicate using message passing. Messages are passed through com-

munication blocks, whose parameters characterize the overall hardware and software links.

The communication network itself is a communication block whose overall parameters are

presumably unknown, but derivable for a given message pattern. For situations commonly en-

countered in real systems: passing messages from the same source over multiple communication

blocks, processing incoming messages from the same source in parallel by distinct processors

or by the same processor, and concurrent access of a single communication block by different

message sources, we give rules for reducing the corresponding communication topology to a
single equivalent communication block.

Although the model is expressed in terms of message-passing primitives, it has applicability

to other communication paradigms commonly used in parallel programming. For example, the

shared memory model of communication can be expressed in terms of a message passing model
through the communication primitives send and receive.

Assumptions A1 - A4 above are related to the reliability of the communication network.

It is the responsibility of the underlying layers of communication protocols (software links)

to en_ure that these assumptions will be always true for any end process or any pair of end

processes participating in the computation. This is achieved in common operating systems

by a layered communication architecture. However, in the case of the tightly coupled parallel

computers, where these properties can be supported directly by the hardware (through a

highly reliable interconnection network and simple hardware protocols), we assume that no

other requirement is enforced on the communication links. That is, we assume that only the

minimal requirements of a reliable communication are met and no specific protocols supporting
other costly facilities are implemented in addition.

We focus throughout this paper on the general case of communication within a cluster

of workstations cooperating in a distributed computation. Tightly coupled multiprocessing is

included, and we analyze how it compares with LogP model [4] in the last section. However,
distributed computing is more challenging than multiprocessing for reasons beyond the obvious

higher average latency and smaller average bandwidth per node:

1. The individual nodes in cluster computing environments are powerful full-function com-

puters with a fully developed memory hierarchy, running a non-dedicated general purpose
operating system.

2. Unlike a multiprocessor system, a network of workstations has no dedicated hardware

links between processing nodes. In one form or another, depending on the physical and

2

:: !i!ii (i!i ii (i i :

................. : : • _•Ḩ ¸ :: _: :__: _:_!:•I:!_::<_ :?_•:/:L: •:_ _ i? !r::_i•::_i•i:!•:i:i:_•ii'::!i:i••i•::: ?i_!_:_!_::iii_:i_ii:)::!:i!iii!!iiii_i:•i;:iii:i:i!!ilili!!iiii:i•i_:i(ii:iiiii_ii:ii!!ili(_::__iiiii_!_iiii_ii_ii_ii_ii_ii_i_!_i_i_i_iiJi_i_i_i_iii_iii_iiiiiiiiiiiii_iiiiiiiiiiiiii_iii

data link layer characteristics, contention does occur. Of course, contention might also

occur in multiprocessor communication; however, its extent and impact can be limited

by either the specific interconnection topologies or by a careful implementation of a given
parallel algorithm.

Another important problem when evaluating the performance of parallel algorithms in

practice is the distribution of work among processing nodes. This is important in multitasking

environments (especially in distributed computing) where the processing nodes are not guar-

anteed to be available at all times. This impacts not only the computation; Communication

may also be affected by the presence of other processes contending for the use of the com-

munication links. However, it is not the goal of the present work to address the problem of

fluctuating loads and its possible effects on the performance of parallel algorithms either from

the computation or from the communication point of view. We assume throughout the paper

that a single end process is running at a given processing node. An interesting report exploring

the opposite extreme (interfering end processes, but free communication) is [13].
This paper is organized as follows:

Section 2 formally defines the hyperbolic model and an algebra of four rules for reducing a

communication graph to a single communication block. Each of the rules is illustrated with a

simple example.

Section 3 describes communication patterns generated by operations common in parallel al-

gorithms (broadcast, global operations, synchronization and nearest neighbor communication)

and describes how these can be evaluated using the model. Results obtained in experiments

with these operations in a distributed computing environment are presented as a first step in

validating the model. Predictions and experiments disagree by at most 15% over a range of

message sizes from one byte to 64Kbytes, on up to 16 dedicated workstations connected by
Ethernet.

Section 4 presents a method for determining the parameters of the communication blocks

when modeling communication in a cluster of workstations.

Section 5 describes two model parallel scientific applications used to test our model, giving

rise to various communication patterns as well as a wide range of message size distributions

and communication to computation ratios. Results of the experiments support the model in

fitting with predictions of the cost of communication between end processes, to within the

limits of control of interprocessor synchronization.

Section 6 describes the LogP model of computation for massively parallel processors [4]

and shows favorable comparison of the hyperbolic model with it in the small message regime,
for which the comparison is easily made.

2 The Hyperbolic Communication Model

Given a set of source nodes S, a set of destination nodes D, and a set of messages M in a
parallel processing environment such that:

1. every message in M is sent by a node in S to a node in D;

2. every node in S sends at least one message and all messages it sends are in M;

3. every node in D receives at least one message and all messages it receives are in M;

i:i

.... : : iI _ i

our goal is to estimate for every message in M:

• the time interval between the sending of the message and its delivery to the destination;

• the time interval required by the source node to send it;

• the time interval required by the destination node to receive it.

The sets D, S, M determine the state of the communication system which is represented

as a directed graph called a communication graph (CG for short). A CG has two types of

nodes: terminal nodes and internal nodes. The terminal nodes represent the end processes

that ultimately initiate the sending (source node) and receiving (destination node) of the data,

while the internal nodes embed all the functions performed in software and hardware by the

communication protocols in order to deliver data from source to the destination. The direction

of graph edges specifies the data flow.

Between any two terminal nodes the data is passed in byte streams of any size called

messages. A messageis generated by only one source node and delivered to only one destination

node. At the source node a message m is represented by a pair m(x, dest), where x is the

message size and dest is the destination node to which the message is to be delivered. At

lower communication levels a message is usually split in smaller data units of limited size,

called packets (if the message is small enough to fit in a packet then, obviously, it is not split).

Associated with each edge is a list of the messages sent along that edge.

An internal node or Communication Block (CB for short) is an abstract module that per-

forms the communication protocol functions. Among these functions are: splitting of messages

in packets for passing to another CB, recovering lost or corrupted packets, and routing the
packets in the network.

We say that two or more CBs are dependent iff only one of them can process data at a

moment in time and independent iff at any moment in time all CBs can process different

streams of data without interfering. For example, two CBs running on different processors are

independent, while if they run on the same processor they are dependent.

The most important parameter characterizing a CB is the time required to process a

message of size x, called the total service time. As with any realistic model, we consider that

the packet processing time has two components [15]:

• a fixed service time that is independent of the packet size,

• an incremental service time that is proportional to the packet size.

The fixed service time appears at almost every layer of the communication architecture and

includes [3, 14]: the overhead associated with memory management, interrupt processing and

context switching, and the propagation delay of a packet on the communication network.

The incremental service time is mainly due to [3, 14, 15]: data movement between different

protocol layers, building CRC (or checksum) when the packet is sent and verifying.it when the

packet is received, transmission of the packet on the communication network.

As an example, consider a distributed application consisting of three processes running on

different workstations connected by a communication network. Assume that each workstation

has a general purpose processor that runs the operating system and user applications, and

a special I/O processor that sends/receives data to/from the communication network (the

network adapter). The corresponding CG of this system is presented in Figure 1, where

4

• , ! _ 7111 71 <, _ _< i _ _ <

"7

i:i<

terminal nodes are represented by circles and CBs are represented by boxes. Each workstation

is represented by two CBs, one that runs on the main processor (boxes labeled CBll, CB21,

CB31) and represents the communication protocol functions performed by the operating system

and the application (e.g., network layer and the upper layers of ISO/OSI standard), and the

other that represents communication protocol functions performed by the network adapter

(CB12, CB22, CB32). We also represent the communication network as a communication block,

labeled CBc, for which the fixed service time is the delay introduced by the.communication

network and the incremental service time is the average time required to send one byte of data

(called transmission time). The incremental service time includes the overhead generated by

the protocol layers to ensure the reliability (e.g., acknowledgment packets).

............... _w_sj

ml(Xl, 2), m'l(X'l, 3)

ws2 _wsa

m2(x2, 3) m3(x3, 2)

(_ _ ml,m3 __)m2, m'l

4, ,I,'t

lcB i feB32I

Figure 1: Communication graph (CC) for three processes running on different workstations.

Each terminal node (process) contains the list of messages it sends (node 1 sends ml to 2 and

m_ to 3, node 2 sends m2 to 3 and node 3 sends m3 to 2). Each edge is labeled with the list of
messages that flow in that direction.

Now, let us consider a CB characterized by the following parameters: the maximum packet

size p (bytes), the fixed service time per packet a and the incremental service time per byte

m. Then the total service time t for a message of size x is given by the following equation:

= a[l + rex, (1)

where rx/p] is the number of packets of maximum size p being processed. For convenience we
rewrite (1) as:

t(x; a, m,p) = a . _(x,p) + (p + m) . x, (e)

where _(x,p) = r lp] - zip = (pfz/p] - z)/p is a value between 0 and 1. Observe that for

x -+ 0, t(x;a,m,p) _ a and for x --+ oo (i.e., x >> p) the first term from (2) can be neglected,

i.e., t(x; a, re, p) "_ (a/p + m) • x. Using these observations we approximate the total service

5

/ .• • • :: /_i ¸¸_:7 :• •

12

10

time 6

0

I I I I

• t(x; a, m, p) --
T(x; a, b)

0 2 4 6 8 10
message size (x)

Figure 2: The total service time t(z;a, m, p) versus the continuous function T(z; a, b) used to

approzimate it (a = 1, m = 0.5 and p = 2).

time t with the following monotonically increasing continuous function defined on the interval

[0, oo) (Figure 2):

a 2

T(x; a, b) - + bx, (3)a +bx

where b = a/p + m. This is the equation of a hyperbola in the (x, t) plane, with a horizontal

tangent and intercept a at z = 0, and an asymptote of slope b; hence, the name of the model.

The improvement of (3) over a simple latency (a) / reciprocal transfer rate (_) model,

T(x; (_,/9) = c_ +/_x, (4)

is not so much in the fit of a continuous curve to the sawtooth form of a packetized transmission,

but in the analytical simplicity with which the parameters (a, b) for a CG may be derived

in terms of its elemental CBs, as shown by the four combination rules in subsections 2.1

through 2.4. Using Ti to estimate the total service time required by CBI (now characterized

by parameters al and bi as CBi(ai, bi)) to process a message of a given size, we derive rules for

reducing n CBs interconnected in various structures to a single equivalent CB, with service
time T(al, bl, a2, b2, . . ., an, bn).

Although until now we have considered only afized and incremental service time per packet,

the model can accommodate an additional fixed service time per message. This'is useful in

cases where the first packet of the message has a higher fixed service time than all subsequent

packets. As an example, consider a network with wormhole routing; when the first packet

of the message is sent a route is chosen between source and destination, and all subsequent
packets of the same message are sent on the same route. Let us denote by a (1) the fixed service

time associated with the first packet and by a(2) the fixed service time associated with all

,L_I:_!II " • J_il _

X

CB1

(al,, bl)

CB2

(a2,, b2)

X

CB

(aI, bI)
independent

dependent CB

(aD' bD)

ai=al +a2

bi = max(b1, b2)

aD = al + a2

bD = b_ + b2

Figure 3: The equivalence transformation for two serial interconnected independent CB s (right

top) and dependent CBs (right bottom).

subsequent packets of the same message. The corresponding CB has the following parameters:

a(2)
a=a(1); b=--+m

P

where p is the packet size and m is the incremental service time per data unit. In this case the

fixed service time associated with the message is a (1) - a(2).

2.1 Serial Interconnection

Definition 1 Two communication blocks CB_ (a_, bl) and CBu(a2, bz) are serially intercon-

nected with respect to a message m if every packet of message m is processed first by CB1 and

next by CB2, or first by CBz and next by CB1.

Notice that this definition does not imply that a message is processed in its entirety by

one CB and only after that by the other CB . In fact, if the message is long (greater than the

maximum packet size) and the CBs are independent, as soon as CBI delivers a packet, CB2

can start to process it. In other words (see Figure 3), while CB2 processes the packet most

recently delivered by CB1, CB1 processes the next packet from its input message.

Next, we show how to transform this serial structure into an equivalent CB which has as

input the input of CB1 and as output the output of CB2. To determine the CB parameters
we consider two cases: -

1. Independent CBs . In this case, CB_ and CB_ run on different processors and therefore,

as we have pointed out, they can concurrently process a long message. It is easy to see that

when x --* co the dominant term in the total service time is max(b_x, b2x), due to the fact

that either CBI waits for CB: to process the previous packet or CB2 waits for CB_ to deliver

a new packet. On the other hand, when x ---, 0, the whole message fits in a single packet

and therefore CB2 cannot begin processing until CB1 finishes processing. Since the individual

service times are al for CB1 and 'ag. for CBg., it is clear that the total service time for CB is

al + a2. Hence, we obtain the following parameters for the equivalent CB :

al = al + a2; bI = max(bl,bg.).

2. Dependent CBs. Here, is not possible for CBi and CBz to run concurrently (i.e. CB1 and

CB2 use a non-sharable common resource during the processing). This is not different from

previous case for x --* 0 (the total service time is also al + a2), but, since no processing overlap
is possible, the total time service for long messages, i.e. when z --* oo, becomes blz +b_.z. This
gives us the following CB parameters:

aD = al 4- a2; bD = bl + b2.

Now, we can easily generalize our results by giving the following rule:

Rule 1 (Serial Interconnectlon) Given n serially interconnected communication blocks

CB_(al, b_), 1 < i < n, this structure is equivalent to a single communication block CB(a, b),
where:

a = _ai; b = max(bl,b2,...,b,,)
i=1

if all CB s are independent, and

i=1 i_-1

if all CB s are dependent.

To illustrate the use of rule 1, consider a workstation modeled by three CBs :

$

(5)

(6)

CBa(aa, ba) - models the total service time at the application level (e.g., suppose the

application makes an extra copy to/from an internal buffer);

* CBos(ao,, bos) - models the total service time due to the communication protocol func-
tions performed by the operating system;

e CBc(ac, bc) - models the total service time due to communication protocol functions

performed by the network adapter. The ac represents the time interval required to get
access to the communication network (this is influenced by the medium access control

mechanism [16]), while the bc is the time required to send one data unit. The inverse

of bc corresponds to the available communication network bandwidth. The transmission

delay (the time interval required to send one data unit from source to destination on

the communication network) is ignored in this case as being much less than the other
communication parameters.

As in the previous example, assume that the general purpose processor runs tl_e operating

system and the user processes, while the network adapter performs only specific communication

network functions. We can reduce this structure by applying rule 1 twice: first reduce the serial

interconnected dependent blocks CBa and CBoo (CB_ and CBos are dependent because they

run on the same processor) to C B', and next reduce the serial interconnected independent

blocks CB' and CBc to CB(a, b). It is easy to verify that after these reductions we obtain the

following CB parameters: a = a,, + aos + ac, m = max(b_ + bos, be).

x

CB I aD = min(al, a2) CB

|

(aD, bD) [bD = rain(bl, b2) (aI, bI)

ai = min(al, a2)

bi = bl b2 / (bl + b2)

Figure 4: The equivalence transformation for two parallel interconnected dependent CBs (bot-
tom left} and independent CBs (bottom right}.

2.2 Parallel Interconnection

Definition 2 Two communication blocks C B1 and C B2 are parallel interconnected with respect

to a message m if every packet of that message can be processed either by CBI or CBg.

Figure 4 shows two parallel interconnected communication blocks. For this type of intercon-
nection we assume that the packets are processed in the way that minimizes the total service
time of the message. As before, we take into account two cases:

1. Independent CBs . Let us denote by x the total size of the message ra. According to

our assumption, if z --* 0 it is clear that the total service time is minimum when the input is

entirely processed by C_ if a_ < a2, or by C2 otherwise. When x --+ co, the total service time

is minimized when the splitting of x ensures a equal load for both C'B_ and C'Bz. Denoting

by x_ and x2 the sizes of the inputs processed by CB1 and by CB2 respectively, it is easy

to see that load balancing is achieved when xl = _b2/(b_ + b_), x2 = _b_/(b_ + b_). Finally,
combining either of these solutions with the asymptotic expression of the total service time of

CB, T(x; a, b) = bx for x --_ co, we obtain the overall CB parameter set:

al = min(al,a2); bl = blb2
bl + b2 (7)

2. Dependent CBs . Since both CBs run on the same processor it is obvious that we can

minimize the service time by simply choosing the best parameters in each case (e.g. for x --_ 0

time

3O

25

20

15

10

5

0
0

I I I I I I I

T(x; 2, 2) --
T(x; 2, 3) _
T(x; 3,2)

• • • • •

I I I I I I I

I 2 3 4 5 6 7 8
message size (x)

Figure 5: The total service time T(x; 2, 2) for the resulting CB after the equivalence transfor-

mation of two dependent parallel interconnected CBs with total service time given by T(z; 2,
3) and T(z; 3, 2), respectively.

we choose the CB that has the minimum fixed service time, while for x -+ oo we choose the

CB that has the minimum incremental service time), which gives us the following results:

aD = min(a,,a2); bD = min(b,,b2) (8)

More generally, it can be shown that:

Rule 2 (Parallel Interconnection) Given n parallel interconnected communication blocks

CBi(ai, bi), 1 < i < n, this structure is equivalent to a single communication block CB(a, b)
where:

a=min(a,,a2,...,an); _ = b_ (9)
i=1

if all CBs are independent, and

a=min(al,a2,...,aN); b=min(b,,bz,...,bn); (10)

if all CBs are dependent.

Figure 5 shows the total service time functions of two dependent parallel interconnected

CBs and of the resulting CB, after the equivalence transformation. The initial CBs have the

communication parameters a = 2, b = 3 and a = 3, b = 2 respectively. According to the

above rule, in this case (dependent interconnection), the equivalent CB has as parameters

a = min(2, 3), b = min(3, 2). At the limits, the total service time function of the equivalent

CB, T(x; 2, 2), approaches asymptotically the better of the service time functions of the initial

CBs, i.e. for x -+ 0 approaches T(x; 2, 3), while for x -+ oo approaches T(x; 3, 2).

10

iii?i

i?il

:::L

.%

_Iii!

}
ill

i_(] _ .:/ :_ _i_i_ / :i ' i_ i!'?_'.'i_ii_

Before turning to the more difficult case of concurrent message processing, we summarize

the results of serial and parallel interconnection on independent and dependent CBs. In the

small message limit that governs the a parameter, CBs in serial combine additively and CBs

in parallel combine by taking the minimum. In the large message limit that governs the

b parameter, CBs in serial that are dependent combine like resistors in series, and CBs in

parallel that are independent combine like resistors in parallel. The other two subcases obey a

ma_dmum (serial, independent) or a minimum (parallel, dependent) law in deriving the overall
b. No approximations are necessary in deriving these rules.

2.3 Concurrent Message Processing

Until now we have considered processing of individual messages of a given size. In this section

we analyze the general case in which a CB receives n messages ml, m2, ..., m,_ of sizes xl,

x2, ..., xn to be processed (Figure 6). We assume that CB processes ml, ..., m,_ messages

using an arbitrary policy, i.e., first processes mil, next mi2 , and last ml, (where Q, ..., i,_ is a

permutation of 1,..., n). Therefore, we cannot tell exactly how long it takes for CB to process

a message ml in the presence of other messages, but we know the corresponding total service

time for each mi if they are processed alone (3). Now let us consider that xi --_ 0, (i = 1,..., n).

In this case every message takes the same amount of time a to be processed and, therefore,
that the total service time for all messages is ha. Next, take xi _ c_. To compute the total

service time we assume for simplicity that messages are processed sequentially without delays
and therefore the total service time is given by the following equation:

t(xl,x2,. ..,xn; a,b) = b . _ xl. (11)
i=1

CB

(a, b)

XlX2...Xi...Xn

Xi

CBi I(ai, bi)

xi

ai=na

bi = b (Xl + x2 +... + Xn) / x i

Figure 6: The equivalence transformation in the concurrent message processing case.

Since we cannot tell exactly when a particular message mi is processed, we consider the time

required to process mi being bounded by the time required to process all messages, i.e. equiv-

alent to the case in which mi is the last message being processed. According to the previous
limit conditions we can write the total service time as:

T(xdX, n; a, b) = (ha)2
na + bX q- bX, (12)

where X =)"_=1 xi is the total amount of information processed by CB The "x. X n"
• $,

notation indicates that the message of size xl is processed concurrently with other n- 1

11

/ ii ¸

ii_ _ • i

messages of total size X - xi. To be consistent, when X = xl (which implies also n = 1) we

remove "]X, n" from the notation. Then, with the notation a' = na and b_ -- bX/xi, we write
(12) as:

at2

T(xi; a, b) -- a' + b'xi -F b'xi (13)

By associating (13) with (3), we can state the third rule:

Rule 3 (Concurrent Processing) A communication block CB(a,b) that processes n mes-

sages ml, m2, ..., m,_ of sizes xl, x2, ..., x,_, respectively, is equivalent to a structure of

n communication blocks CB1 (al, bl), CB2(a2, b2), ..., CB,,(a,,, b,,), where CBi independently
processes the message ml and has parameters:

al = na; bl = b.)-_._=1 xl
x, (14)

For the particular case in which all messages have the same length we obtain b_ = bn (both

parameters a and b are scaled with the same value n). For a random order of messages, al is
pessimistic by only a factor of two on average.

As an illustration of applying this rule (and of the first rule) we take a simple example. As

depicted in Figure 7, suppose we have five processes (numbered from 1 to 5) running on different

machines. Each machine is represented by a CB that includes all the communication protocol

functions (implemented by the application, the operating system and on the network adapter).

Further, assume that each of the processes 1 and 3 sends a message to process 4, while process 2

sends one message to processor 5. The question is to determine the total service time to send the

message ml from 1 to 4. To answer this question we reduce the initial CG (Figure 7(a)) in two

steps. First, applying rule 3 to CBc and CB 4 we obtain an intermediate structure consisting

of three serial interconnected independent communication blocks CB1 (al, bl), CB_ (ac, be) and

I 3ac, t bc(xl =CB_4(a_4, b_4) (Figure 7(b)), such that a c _- bc ___-- _t_ X2 _[. X3)/Xl ' a_ ---- 2a4, b_

b4(xl -_ x3)/xl. Next, using rule 1 this structure is reduced to the final structure consisting
!

of a single communication block CB (Figure 7(c)) with parameters a = a_ Jr ac Jr a'4 and
b max(b1, t '-- b_, b4) , which are finally used to compute the total time to deliver ml from process

1 to process 4 by substitution into equation (3).

2.4 The General Reduction Rule

Thus far, we have implicitly assumed that the communication graph is the same for small and

large messages. Although this is true for many cases, for complex communication patterns this

assumption is no longer valid. As an example, we will show that for the broadcast implemen-

tation (section 3.1) based on the binary tree topology for small messages we can ignore the

contention on a shared communication network if the transmission time is orders of magnitude

less than the sending and receiving overhead, while for large messages the contention cannot

be ignored. In consequence the CG will be different for small and large messages. In this case

the following general reduction rule may be used:

Rule 4 (General Reduction) Given two terminal nodes s and d such that s sends a message

m of size x to d, then the total service time for the message m is:

a 2

a, b) - a + + (15)

12

ml(Xl, 4) m2(x2, 5) m3(x3, 4)

(al, bl) (a2, b2) (a3, ba)

x
(ae, be)

CB4

(a4, b4) I I CB5(as, b5) !

a)

4
ule 1

ml(xl, 4)

®

CB

(a, b)

c)

ml(xl, 4)

?
I CB_(al, bl) I

lml
CB'ea'(ob'c)

Ira'
CB'4(a'4, b'4)

®
b)

l a'c = 3 a¢b'e = be (Xl + X2 + X3) / X 1

I a'4 = 2 a4b'4 = b4 (Xl + x3) / Xl

a=a_ +3ae+2a4

b = max(bb

be (Xl + x 2 + x3) / Xl,

b4 (Xl + x3) / Xl)

Figure 7: Computing the estimated time for the message rnl to be delive.red to the process 4 by
successive reductions of the communication graph.

13

where a is the service time when sending a small" message from s to d (x --. 0), and b is the

service time per data unit when sending a large message from s to d (x --+ c¢).

The parameters a and b can be computed by using rules 1-3 to reduce the corresponding

CGs. Notice that the general reduction rule is equivalent to reducing the paths along which

message m may travel between source and destination (called m-communication paths) to a
single communication block CBa with parameters a and b.

2.5 Communication Time Measures

When a message is sent between two end processes, represented as terminal nodes in CG, three
measures are particularly important:

• the total time interval between sending the message (by the source process) and delivering

it (to the destination process), called total communication time (Te). As we have shown

in the previous section, by applying the general reduction rule, Tc can be computed as
the total service time of the resulting CBa.

• the time spent by sender while sending the message, called sending time (Ts).

• the time spent by receiver while receiving the message, called receiving time (Tr).

To determine the Ts and Tr, we need to take a closer look at the sending and receiving

mechanisms. First, let us consider all paths between source and destination along which a

message travels. Next, using the equivalence transformation rules, we reduce all paths to a

single path containing only independent CBs : CB1, CB2, ..., CB= (we consider that this

is always possible), where the source process runs on the same processor as CB1 and the

destination process runs on the same processor as CBn. Now, let us analyze the mechanism of

sending a message from source to destination along the equivalent path. The discussion here is

similar to the serial interconnection of independent CBs. If the message is large, i.e. it consists

of a large number of packets, then the message is concurrently processed by the independent

CBs in a pipeline fashion. As we have shown, in this case the processing speed is determined

by the slowest C'B . From here results that if CB1 is not the slowest communication block,
then after it processes a packet it must wait a certain amount of time in order to deliver the

next packet to CB 2.

In our model we define Ts either as the time required to process all message packets by CB1,

or as a time interval between starting processing of the first packet and the delivery of the last

packet to CB2. In the first case, the send primitive is said to be preemptive, while in the latter,

the send primitive is said to be non-preemptive. When a preemptive send primitive is used the

control is returned to the caller process as soon as the send operation is initiated and further

computation can be performed concurrently with the processing required to send the message.

When a non-preemptive send primitive is used the caller process is bloc.ked from the moment

of calling the send primitive until the last packet of the message is delivered to CB2. Since

our main focus is to determine the real processing time spent by a CB in sending/receiving a

particular message we prefer to use the terms preemptive and non-preemptive to characterize

the communication primitives, rather than redefining overloaded terms, such as blocking/non-
blocking and synchronous/asynchronous, which are usually used to define the semantics of

the communication primitives. Differences between various types of communication primitives

14

(see [5] for an extensive discussion and formal treatment) are ultimately captured in the CB

parameters. What is important from the point of view of performance evaluation is the extent

to which concurrent processing by the application process and its neighboring CB is allowed.

As an example of a preemptive send primitive, let us consider a single processor work-

station that runs a preemptive operating system (e.g., UNIX). We roughly describe how the

send primitive may be implemented. When the application process (that runs on the same

processor as the operating system) invokes the send primitive, the first packet Of the message

is processed and delivered to the CB2. Next, the control is returned to the caller process, which

can proceed with its computations. After CB2 processes and delivers the current packet, it

asks CB1 for the next packet to be sent (usually, this is done using an interrupt mechanism).

In turn, the application process is interrupted and the next packet is processed and delivered

to CB2. This procedure continues until the last packet of the message is' sent out. If we neglect

the interrupts and operating system calls overhead, then it is clear that Ta is the total time

required by CB1 to process all the packets of the message.

In the case of the non-preemptive send primitive implementation, after the first packet

of the message is processed and delivered, CB1 waits to deliver the next one. Therefore the

sender process is blocked until the last packet of the message is delivered to CB2.

To determine Ts we consider several cases (see Figure 8):

if the message is small, i.e it fits in one packet, we take Ta equal to CB1 service time

TCBa for both preemptive and non-preemptive send primitives. This is equivalent to con-

sidering that when the send primitive is invoked, the message is processed and delivered

in only one packet to CB 2 and then the control is returned to the application process.

if the message is large and a non-preemptive send primitive is used, then it is easy to see

that the total communication time Tc is equal to Ts plus the time required by the last

message packet to be delivered to the destination process, i.e. TCB,. Therefore we can

take as an upper bound for T, the total communication time To.

if the message is large and a preemptive send primitive is used, then Ts accounts for the

total time required to process and deliver all the packets of the message by CB1 and thus

we take Ts equal to TcB_.

Although we have considered very simple send primitive implementations, the model can

accommodate more complicated implementations. As an example, let us assume that the

communication protocol requires that the receiver to be informed about the size of the message

before the message is actually sent (in order for the receiver to allocate memory space for the

incoming message). Moreover, consider that this implementation is based on exchanging two

messages: one to inform the receiver about the size of the message and one to acknowledge

that the buffer has been allocated and the sender can proceed. This case can be modeled by

adding a new independent communication block before CBa, called CBo, with the following

parameters: a, equal to the average time required to exchange the t_vo messages plus the

overhead to allocate the memory at the receiver and possibly other interrupt and system calls
overheads, and b = 0.

As another example, let us assume that for a non-preemptive send primitive implementa-

tion the communication protocol requires that every packet be acknowledged by the receiver.

In this case we can add a new communication block CB_ after CBo which has as parameters:

15

Tr :

Ts : preemptive

short message (x--* O) TcBl(x;al,bl)

long message (x _ co) Tcst (x; al, bl)

non-preemptlve

T_(x)

short message (x --* O)

long message (x --* co)

preemptive non-preemptive

Tcs.(z;a.,b.) TcB_(z;a.,a.)
TcB.(_;a.,b.) TcB.(_;a.,b.) <_Tr <To(z)

Figure S: Sending (Ts) and receiving time (Tr) expressions, where message size is x.

a, equal to the average time interval to receive the acknowledge from receiver by the sender,
and b = O.

Now, let us concentrate on the receiving time Tr. Since we are not interested here in the

synchronization time, we consider that the receive primitive is called at the same time the

first packet of the message is received by CBn. Similarly to To, Tr is defined either as the

time required to process all packets of a message by CB,_ (preemptive receive primitive), or

as a time interval between the beginning of processing of the first packet and the finishing of

processing of the last packet from the message (non-preemptive receive primitive). The T_

analysis is the same as Ts analysis for small messages and for large messages when preemptive

receive primitive is used (see Figure 8). The major difference is when we consider large

messages and preemptive receive primitives. Unlike the preemptive send primitive, where

after the first packet is sent the application process can proceed, when receiving we assume

that the application cannot proceed until the last packet of the message is received (in other

words, the message is not passed to the application process until it is completely received) and

thus we take T. equal to To. On the other hand, if more than one message is received at the

same time, the waiting time between processing packets from the same message can be used to

process packets from other messages and therefore, in the limit, we can take T. equal to Tos..

Although in Figure 8 only the expressions of Ts and Tr for the extreme message sizes

(x --_ 0, x --* oo) are given, we can use again the equation (3) to approximate To(x; as, bs)

and T.(x; ar, b.) for any message size x, where as = T.(x _ 0), a_ = T.(x --. 0) and b_ =
lim._..oo T'-'A_, b_ = lim.._.oo T_-T-_-(a_.

3 Common Communication Patterns in Parallel Applications

In this section we give some examples of how the model can be used to analyze four archety-

pal communication patterns encountered in parallel applications: broadcast, synchronization,

global reduction, and nearest neighbor communication.

We consider a network of homogeneous workstations interconnected by a communication

network. Each workstation is represented by a communication block CBw, while the com-

munication network is represented by a communication block CBc. Also, when a message

is received, a communication block CBL is added between the communication network CBc

and the receiver CBw. The role of CBw is to capture the message processing overheads at

send and receive (here we assume that the send and receive processing overheads are equal).

CBc captures the communication network bandwidth (1/be) and the possible delay before the

first bit of the packet is sent on the network (at). Finally, CBL captures the communication

delay L (aL = L, bL = 0). The send and receive primitives are considered non-preemptive.

16

.......::"........................_:::::::..... :__::__ :_,_:: _:_:,:__::,:_ _:_::_:_" : _:_: _. :_/::i:_/i:i_::i/izi::::?i _:::i_::_i/i!::i_i_!:!!!flail_:_i_i¸iiii!i::i:ii_i_i_i_i_!i_i!i:_i_i_i!_i_iiiii!i_ii_i_i_i_i_i_iii_iiiiiiiiiii_i_!ii_i_iiiiiiiiiiiii_i_iiii_iiii_iiiii_i_i_iii_iiii_ii_i_iii_iiiiiiiiiiiJiiiiiiii

Figure 9 shows the communication graph for a message transmission between two processors.

WS1

ml(xl, 2)

!

WS2

_ml

CBc !

Figure 9: The communication graph for sending one message from process 1 to process 2.
Observe that the CBL appears in the communication path only between communication network

(CBc) and workstation communication block CBw.

3.1 Broadcast

The broadcast primitive ensures the delivery of a message from one processor to N other pro-

cessors. We consider two broadcast implementations. First, a binary tree is used to broadcast

the message from a root processor to all other processors as indicated in Figure 10. For sim-

plicity, we assume that every node of index i sends the message first to the left child (2i + 1)

and next to the right child (2i + 2). We are interested in determining the total time required

to complete the broadcast, i.e. from the moment when the root begins the transmission of the

first message to the moment when the message is received by the last processor. As usual,

two extreme cases are considered: the message is very small (z _ 0), and the message is very

large (x --. oo). For small messages we assume that sending and receiving overheads aw are

much larger than the actual transmission time ac + box and therefore we do not address the

situations in which more than one processor sends the message on the communication net-

work at the same time. With this assumption it is easy to see that the communication time

between any two processors is Tc = 2aw Jr ac + aL, while the sending and receiving times

are Ts = Tr = aw. Back to our example (Figure 10(b)), the time required to complete the

broadcast is 8aw + 3ac + 3aL. Generally, for a complete binary tree of. height h, the time to

complete the broadcast is h(3aw + ac + aL).

In the case of large messages the transmission time and other incremental service times are

much larger than the communication delay and corresponding fixed service times. The activity

of each processor over time is depicted in Figure 10(c). Since we consider non-preemptive send

and receive primitives, we have T8 = Tr = Tc (see tables in Figure 8). As one can observe there

are moments in time when more than one processor sends a message on the communication

17

network (e.g. transmission between processor 0 and 2 takes place simultaneously with the

transmission between processor 1 and 3). If _here are n processors that concurrently send

messages of the same size, then by applying rule 3 and the general reduction rule we obtain

for every message path (from our topology a message travels along only one path between

source and destination) the equivalent communication block CBG with parameters: aG --

2aw + nac + aL and bG = max(nbc, bw). Since, for very large messages, the incremental

service time dominates the fixed service time we approximate Te with bax, where x is the size

of the-message being broadcast. Consequently, the time required to complete the broadcast

in our example is equal to z(2max(bc, bw)+ max(2bc, bw)+ 2max(3bo, bw)). Now, the

entire broadcast communication graph can be reduced to one communication block CBBCAS T

with the following parameters: aBCAST -- Saw + 3ac -I: 3aL, bBCAST : 2max(bc,bw) +
max(2bo, bw) + 2 max(3bv, bw).

0

7 8 9 10

6

2

t

a)

7

b) c)

Figure 10: a) The broadcast binary tree for 11 processors, b) The processor activity when a

small message is broadcast. The sending time is represented by empty bars while the receiv-

ing time is represented by shadowed bars. c) The processor activity when large messages are
broadcast.

In the second broadcast implementation (which is the native implementation in p4, version

1.3) the root processor simply sends the message to every other processor: 1, 2, ..., N. It

is very easy to see that in this case the time to complete the broadcast for small messages is

(N+ 1)aw +ac -_-aL and for large messages is N.max(bc, bw).x. Although this implementation

is the simplest possible, notice that if bc > bw, there is no other broadcast implementation

to give better performance for large messages (this can be easily verified for the binary-tree
broadcast implementation). This is because in this case the communication network is the

bottleneck for any number i of messages that are concurrently sent (max(ibc, bw) = ibc) and

18

ii

:.'::

le+06

100000

time(usec)

10000

i i i w T Ill I i _ i i i ill I _ | g i i iir i

..0...._.....0....0....._.....0. • • .

_ . "

observed <>
predicted

.0 !

1000 I I , I ,
10 100 1000 10000

message size (bytes)

Figure 11: The estimated Te versus experimental data for the broadcast binary tree implementa-

tion. The regression coefficient is 0.88. The experiments were run on 11 Sun SparcstationELC

workstations interconnected by an Ethernet network using P4.

therefore the total broadcast time has as a lower bound the time required to send all messages
across the communication network, which is Nbc.

The shapes of the estimated communication time functions for the tree-based and serial

broadcasts, together with experimental measurements of To are shown in Figures 11 and 12, re-

spectively. All experiments in this and subsequent sections were run during periods of dedicated

time on up to 16 Sun SparcstationELC workstations. The p4 package from Argonne National

Laboratory [2] served as the application-level communication support. The model offers a very

accurate approximation to the actual measurements. The regression coefficients are 0.88 for

the binary tree broadcast implementation and 0.92 for the second broadcast implementation.

In both cases, the maximum error was around 10%. All CB parameters were experimentally

determined in the limits of small or large message size and one or many processors, using the

procedure described in section 4.

3.2 Synchronization and Global Operation

Both synchronization and global operation primitives can be implemented using the same com-

munication pattern. Although it is not the most efficient implementation, we describe here

the one used in p4, version 1.3. The global operation implementation differs from the syn-

chronization in two respects. First, during the global operation the synchronization messages

carry partial results and second, besides sending and receiving messages the processors are

responsible for computing partial and final results. Therefore, the synchronization can be seen

as a special case of global operation where no computation is performed. In the remaining of

this subsection, we concentrate on the global operation implementation.

A global operation primitive implements a group computation. Formally, a group compu-

19

i i_ _ ii!i!i!iii!iI_ii:i_ _i!i:_i!_ii

le-1-06

IO0000

time(usec)

I0000

' ' ' ' ''''1 ' ' ' ' ''''1 ' ' ' ' ''''1

.<>.• • ,0...0....<>... 0...0""

.<3"
.0

1000 ' _ • , I
10 I00 1000 I0000

message size (bytes)

observed 0 •
predicted • • •

..0 0 -

. . . o

Figure 12: The estimated Te versus ezperimental data for P4 native broadcast implementation.
The regression coe.O_cient is 0.92.

tation is defined as follows: given n different items al, a2, ..., an in a group (S, @) (where (9

is a binary associative and commutative operation defined on set S) compute the final value

al (9 a2 (B ... _ an. The following are examples of group computation: finding the sum, the
maximum, or the minimum of a set of n numbers.

The global reduction primitive gathers a value (or a set of values) from each processor,

computes from them a single result (or a single set of results) and distributes it to every

node. The implementation consists of two phases, illustrated by the light and dark arrows in

Figure 13(a), which is from the same incomplete binary tree used in the broadcast illustration.

In the first phase, the tree is used to collect the results from the leaves toward the root.

Whenever a node receives the values from its children, it computes the partial result, i.e.

valnodc (_ Vallehild (_ valrehitd, and sends it to the parent. Therefore, after the root receives the

partial results from its children it can compute the final result. In the second phase, the root

distributes the final result by sending a message to every processor.

Since the values carried by the messages are often no larger than 8 bytes (double precision

numbers), we assume that sending and receiving overheads are much larger than the actual

data transmission time and therefore we ignore the message contention on the communication

network. Also, we ignore the time to compute the partial and final results as being much less

than the communication time. From Figure 13(b) it may be seen that the total time required to

complete the global operation is 19aw + 4ac + 4aL. The observed error between the estimated
=

completion time and experimental measurements is about 15%. (Since synchronization and

global reduction operate on messages of trivial size, there is no effective hyperbolic law as a

function of message size to graph for these primitives.)

20

ii:'

I / I

,c_

a) b)

Figure 13: a) The communication pattern used by the syncronization and global operation

primitives for 11 processors, b) The processor activity over time.

3.3 Neighbor Communication

A broad range of scientific algorithms arising from differential equations require data to be sent

from one processor to its logical neighbors. As an example, consider a domain decomposition

problem ([11]; see section 5.1) where each subdomain of a domain on which a partial differential

equation is to be solved is mapped onto a single processor. At each iteration of the algorithm

every processor sends to its neighbors the boundary data to be used in the next iteration.

More generally, suppose there are N processors and each_of them has K (K < N) logical

neighbors. Further, we assume that every processor sends messages of the same length to each

of its neighbors at the same moment of time. The latter assumption is based on a parallel

application model in which every processor has the same amount of work to perform between
sending and receiving boundary data.

By applying the reduction rules 1 and 3 to the resulting CG it is easy to verify that the

equivalent CB for any message path has the following parameters: aNEIGHBOR ---: 2Kaw +

If Nat "t- aL and bNEIGHBOR = max(KNbc, bw). Figure 14 shows the estimated Tc function

versus experimental measurements with a regression coefficient of 0.92, and a maximum error
of 17%.

t

r

4 Experimental Evaluation of CB .:parameters

In principle, one can determine CB parameters by considering a workst'ation's physical char-

acteristics (e.g., the processor speed, the memory access time, the internal bus speed, etc.),

and the communication protocol implementation details (e.g., how many times a data buffer is

copied while passed through various protocol layers, the algorithms used to compute the check-

sum, etc.). Although this approach apparently allows accurate evaluation of CB parameters,

it is very hard to apply in practice because of several factors:

21

iiil

'4

iii_il
i:i:i
i:i:_

ilil

/ i ¸ •' :i •'•i _......... /::" ¸:¸¸

le+07

le+06

"time(u_O000

10000

, • •

_. - . •

1000 ' ' ,
10 100 1000

message size (bytes)

..... ': Ibserved '_''1

predicted_

._"

10000

Figure 14: The estimated Te versus experimental data for neighbor communication pattern.
The regression coe.O_cient is 0.92. Here, N = 16 and K = 4.

• Various layers of the communication architecture are embedded in the general purpose

operating systems running on the processing nodes. This makes them compete for system
resources with other processes in the multitasking environment. It also means that

various factors like interrupt processing, context switching, memory management, etc.,

combined with hardware features like the presence of a cache memory system, would
have to be considered when trying to model the communication.

Systems may be heterogeneous (made up of machines from different vendors, with dif-

ferent characteristics and running different operating systems).

Software packages, such as the support for communication between end processes (at

the application level), each having their own characteristics and introducing their own
overhead, which would have to be represented in a detailed model.

We propose here a simple approach to evaluate the CB parameters with an accuracy whose

acceptability can be judged by its fits in Figures 11, 12 and 14. Let us consider a network

of n identical workstations linked by a communication network CBc(ac, be). For simplicity,

assume that the overhead for sending and receiving messages is equal. Thus, all workstations

are modeled by the same CB(a, b) irrespective of whether a message is being sent or received.
Now, consider 2n workstations numbered from 1 to 2n, and let each odd numbered workstation

send a message of the same length to the next even numbered workstation, i.e. 2i - 1 sends

to 2i, (i = 1,2,...n). If we take a pair of workstations 2i- 1 and 2i and first apply rule 3 for

CB_ and next rule 1 for CB(2i_I) , CB(2i) and CB_, the total service time required to deliver
the message from 2i - 1 to 2i is given by:

a/2

T(x, n; a', b') - a' q- b'-----_+ b'x (16)

22

where a' = 2a + nae and b' = max(b, ben).

There are four parameters to be determined: a and b for the workstation CB and ae and

be for the network CBe. Theoretically, we can determine all necessary parameters from the
following equations:

a' lim_-.0 T(x, n; a', b')ae = Hm -- =.lira

b' llmx._,oo T(_,n;,,',b')
be = lim --= lim a,

tt-..-_oo ,/$ _-..-¢ oo n

a' - nae limx_o T(x, 1; at, b') -- ac
a --" [n----I "--

2 2

ma_(b, be) -- lim T(x, 1;a',b')
x--oo :r (17)

Notice that the last equation permits determination of b, the reciprocal of the bandwidth of

the CB associated with each workstation, only if it is larger than be. If it is smaller than be, it

is unnecessary, since the workstation CB is then not the bottleneck in the large message limit.
The first two equations express the well-known truth that when the number of workstations

increases, the network becomes the main bottleneck for the overall performance.

For the SparcstationELCs running SunOS 4.1.3, the p4 communication layer version 1.3,

and the Ethernet at ICASE, where the experiments were performed during "dedicated" wee

hours, the parameters we obtained and used in the "predicted" curves in this paper are:

ae = 345.60 psec

be = 0.92 psec/byte

a = 859.52#sec

b = 1.42 #sec/byte

We note that l/be is only about 10% slower than the theoretical peak performance of Ethernet,

virtually the same performance realization reported in [17]. We expect the b parameter of the

workstation to be visible only when there is low contention, since it is within a factor of two
of the reciprocal of be.

5 Tests on Model Scientific Applications

Two model parallel scientific applications originally written for a tightly coupled multiprocessor

and rewritten in p4 are used as test programs for the hyperbolic model. A domain decompo-

sition (DD) code for the Poisson problem on the unit square and a multigrid (MG) code for

transient flow in a cavity are chosen among conveniently available codes for their simplicity

and for their very different communication patterns. For each application, we first describe

the algorithm just sufficiently to expose the leading order computational and communication

complexity and to appreciate its general context, then we describe the network parallel im-

plementation. Fuller descriptions of the applications themselves may be found in references

[12] and [9]. For each application, we select for graphical comparison various communication

cost estimates and corresponding measurements. The estimates derive from appropriate com-

binations of the archetypal communication operations described in section 3, with parameters
evaluated as in section 4.

23

>:

i:!i

:i:i

i!i!

i:!:

i:i:

£:

ii

: :_! !: ,i '_ i:_

5.1 A Domain Decomposition Application

5.1.1 Algorithm

The first test problem is a partial differential equation (Poisson's equation) on a two-dimensional

square domain with given boundary conditions and a forcing term chosen so that the solution

is smooth. We assume uniform gridding and discretize with the standard five-point difference

stencil; This generates a sparse banded system of linear equations. A domain decomposition

method using conjugate gradient (CG) iteration is used to solve the resulting matrix equation.

The domain is divided into uniform square subdomains by the vertices of a coarse grid (nested
in the grid on which the problem is resolved), and by the edges connecting these vertices.

Altogether, three point sets are distinguished: the coarse grid vertices (or crosspoints), the
fine grid points along the edges (or interfaces), and the fine grid interior points. The union

of the vertices and edges is called the "wire basket." The decomposition of the physical do-
main induces a block structure on the system matrix. The CG iteration is over the full set of
unknowns.

The code used in the tests was originally written for the Intel hypercube by Keyes & Gropp

[12] and uses a BPS,type wire-basket preconditioner [1]. The preconditioning consists of several

serial stages, most of which permit concurrency with a granularity equal to the number of

subdomains. Independent problems on the subdomain interiors are solved concurrently in each

CG iteration. The only communication needed to set them up is in supplying values along the

four bounding segments, which may be segments of the physical boundary or artificial interior

interfaces. Independent problems on the interfaces are solved once per CG iteration. The only

communication required to set them up is in supplying forcing data along the interfaces from

adjacent subdomain interiors. The remaining stage is the solution of a small but global linear

system involving the coarse grid unknowns; this is the only exception (besides load imbalance

due to boundary effects) to full concurrency in the application of the preconditioner. Rather

than solve this problem in a true distributed fashion, which is cost-effective only for small

numbers of processors, the coarse grid problem is assembled in full, redundantly, on each

processor, and then solved serially. Global all-to-al communication is required to set up the

corresponding right-hand side, whose values change at each iteration, and whose computation,

in turn, requires values from along the four interfaces that meet at each crosspoint. The

interior and interface phases involve local communication whose overall volume scales with both

problem size and granularity. The coarse grid phase involves low-bandwidth global broadcasts

whose number (one for each crosspoint) scales with the granularity, but not with the problem

size. A detailed analysis Of parallel implementations of methods of this type on tightly-coupled

distributed memory machines, such as hypercubes, meshes, or rings, is given in [7]. Such

machines have multiple direct links, whose number scales with the number of processors, so

that the local interior and interface communications scale perfectly.

5.1.2 Implementation

On an Ethernetwork of workstations, all communication phases compete for a common re-

source. The degree to which they collide depends on the volume and on the synchronicity of

the messages. Figure 15 shows the most general communication pattern generated for an inter-

nal subdomain with nl and _j points per vertical and horizontal side, respectively. Obviously,

a processor that holds a subdomain located on the physical boundary need not participate in

24

the complete set of messages shown. The numbers assigned to incoming or outgoing messages

define the order of communication operations, as imposed by the data dependencies in the

algorithm. Each message is labeled with its type and the number of data elements (floating
point values) carried.

One all-to-all set of broadcasts is performed per iteration to distribute the crosspoint system

to all of the p processors. Two additional global reduction operations (not represented in the

figure) are executed at each iteration as part of the CG algorithm itself, independent of the

the preconditioning. These operations are the inner products that compute the step lengths

in the vector updates of CG algorithm. The inner product arithmetic scales as the problem

size, but the message volume for these global reductions scales with the granularity only, since

the contribution from each processor is condensed to a scalar with local operations before any

data is shared. The global broadcasts and reductions have a "self-synchronizing" effect on the

parallel algorithm. The main outcome of frequent synchronization is that most of the measured

communication time is spent by processors that finish their computations early idling while
waiting to receive messages from those that are delayed.

Three main characteristics of the communication requirements of the algorithm are: the

communication pattern employed is independent of the. data, the number of messages ex-

changed and the number of global operations per iteration are independent of the iteration

number, and the size of the messages exchanged between neighboring processors is independent

of the number of processors. These characteristics permit very simple analytical models of par-

allel complexity and scalability [7], since most aspects of the computation and communication

can be estimated by considering a single processor on a single iteration.

To estimate the computation and communication complexity, consider that the subdomains

are logically square, i.e. n_ = nj = n. Since the algorithm requires that only the points on

the boundary be exchanged between adjacent subdomains, the communication complexity is

(.O(n) per subdomaln. On the other hand, the computation complexity of the algorithm for

each subdomaln is O(n 2) for the unpreconditioned CG method (a fixed number of stencil

operations at each point) and O(n 2 log n) for an FFT-based fast elliptic solver used on each

subdomain. When the computational work increases we expect that any irregularities between

the timings of identical phases of the computation performed on different processors will also

increase with the same power law, i.e. O(n 2) or greater. Thus, as n increases the differences

between the moments when messages sent by different processors physically hit the network

increase much faster (O(n2)) than the message transit times on the network (O(n)). Therefore,

we expect that for large n there will be practically no contention for the physical network. The

dominant cause for degradation of efficiency in the large n limit is synchronization. In the

opposite small n limit the messages that are sent are tiny and the actual transmission time on

the network is much smaller than the sending/receiving overheads. Therefore, the dominant

cause for degradation of efficiency in the small n limit is latency.

The BPS DD algorithm is run on up to 16 Sparc, stationELC workstations for the following

subdomain sizes: 16, 32, 64, 128, 256, 512. The largest of these problems corresponds to a

square containing (4 × 512) 2 _ 4.19 × 10s grid cells and thus to a matrix containing approx-

imately 2 x 107 nonzero real entries. As partial differential equation discretizations go, this

is a large problem. Figures 16 and 17 compare predicted and experimental timings for all

16 workstations, in two types of tests. In the first test, the original code is run without any

synchronization beyond that inherited from the algorithm itself. We examine here the sending

time for the total of all messages per iteration, averaged over all processors and all iterations,

25

:i_!

ili_i

E

7 AE(ni)

3 _ AW(ni)

10 _ BW(ni)

cw(1)
12_

21 BE(ni)

ni

1 5 9 15 20

AN(nj) AS(nj) BN(nj) ON(l) BS(nj)

J

AN(nj) AS(nj) B_(nj)

n'l I
6 2 11

AE(ni)_ 4

AW(ni) 8

BW(ni) 14

cw(1) 13

BE(ni)_ 19

0_(1) Bi(nj_ _ BCAST(1)
"_Recv BCAST

(p - 1) * (1)

16 18

Figure 15: Communication pattern for a processor associated with an internal subdomain in

the DD method applied to the Poisson problem. A, B, and C are distinct message types, the

compass points indicate message directions, and the number in parentheses is the message size
in real words.

as a function of subdomain size. In the absence of a global clock, it is impossible to measure

the actual message transit time, which would be a difference of absolute times on two different

processors. Instead, we use the sending time (Ts in the notation of section 2.5). It was shown

in section 2.5 that for the non-preemptive send primitive, the sending time is equal to the

total communication time minus the transmission and processing time of the last packet of

the message at the receiver. The sending (resp., receiving) time is defined as the difference

of absolute times measured on the same clock immediately before and after posting a send

(resp., receive), blocking, and returning. Figure 16 shows the predicted and measured sending

times, with a maximum error of about 205{. Since many of the messages are small (one real

word), overall dependence on subdomaln size, which shows up only in the vector messages
transmitting boundary data, is weak.

Next, we modify the application by inserting additional synchronization points so that all

neighbor communications wait until all required data is computed and ready, and we measure

the time interval between the synchronization moment and the moment when the nearest-

neighbor vector messages (only) are received by the application process, averaged over all

processors and all iterations, per iteration. Since the sender and receiver are synchronized for

the nearest-neighbor vector messages, the measured receiving time is nearly the same as the

actual communication time. Figure 17 shows the predicted and measured receiving times for
the neighbor communication pattern. In this case the maximum error is about 15%. Since the

one-word messages from inner product computations and coarse grid right-hand side broadcasts

I i I i

35000 1
30000

25000 I

20000<

time(usec)'
15000

10000 -

5000

0
4

observed
predicted ,..-

A

<> @ @ .v-""""

......................... o ° ° • • ° °" " "•

I I I I

5 6 7 8 9
log(n)

Figure 16: Estimated sending time (To) versus ezperimentally measured sending time for the

native DD code (without ezplieit synchronization}, as a function of the log of the subdomain

size. Note that, unlike Figures 11, 12, and 14, the vertical scale is linear in Figures 16,17, and
19.

are omitted, a clear (linear in n) trend, induced by the domination of the transmission time

over other fixed overheads, is visible.

5.2 A Multigrid Application

5.2.1 Algorithm

The second model application is transient simulation of incompressible Navier-Stokes flow in a

two-dimensional square cavity filled with fluid, driven by an oscillatory rigid lid. The numerical

method is based oft a standard uniform grid spatial discretization and implicit time discretiza-

tion for a velocity-pressure formulation of Navier-Stokes with a hybrid space-parallel/time-

parallel multigrid solver. A multigrid solver uses a succession of grid presenting different

refinements of the same problem, in order to iteratively damp the component of the error at

each wavenumber on the grid for which its particular damping factor is most rapid, rather than

damping all error components on the same grid. Space parallelism is achieved through domain

partitioning, with one processor per subdomain, as in the first model application, though we

permit both stripwise and boxwise decomposition in this case, in order to obtain more flexi-

bility in the number of subdomains, while still preserving the uniformity of each subdomaln.

Time parallelism is achieved by assigning identically spatially decomposed time planes to dis-

joint sets of processors. The motivation for' time parallelism is the degradation of efficiency

in space parallelism that is due both to degrading perimeter-to-area (or surface-to-volume)

ratios of conventional implicit methods, and to degrading convergence rate as global coupling

is sacrificed in the MG "smoother," which is the error-reducing operation at the heart of MG,

performed on a partition of a grid at a given refinement level. The effectiveness of time par-

27

i:i

30000

25000

20000

time(usec) '
15000

I0000

5000

I I I

: . . • • • •

>. 0 0

0 _ _ _

4 5 6 ? 8
log(n)

I

observed <>
predicted

9

Figure 17: Estimated receiving time (7"r} versus ezperimentally measured receiving time for

neighbor communication pattern in the artificiall!t s_jnchronized version of the DD code, as a
function of the log of the subdomain size.

allellsm is counter-intuitive because of causality. Nonetheless, it is more effective than space

parallelism in many practical parameter ranges, when the time resolution of a transient flow
is required.

In the limit of pure time parallelism, p processors work concurrently on p different time

planes of the transient solution. In the limit of pure space parallelism, only one time plane is

computed at a time. Multigrid is used in the spatial direction only; there is no time coarsen-

ing. (Time coarsening is worthy of attention in other contexts (see, e.g. [10]), but is irrelevant

to our immediate purpose for this second application, namely to introduce a communication

complexity that scales to the same asymptotic order in problem size as the computation com-
plexity.)

A multigrid solver is defined by a grid coarsening strategy, a cycle for visiting successively

coarsened grids, a smoother designed to reduce the highest wavenumber errors on a grid of

a given level, and intergrid transfer operators to map the solution or its residual between

grids at adjacent level. As with the DD application, it is beyond the scope of this paper

to provide a self-contained specification of the MG algorithm. It should suffice to specify

for cognoscenti that: the spatial coarsening is by powers of two in a simple V-cycle scheme,

the semi-implicit method for pressure-linked equations (SIMPLE) defines the linearization,

incomplete LU (ILU) decomposition the smoother, and standard full-weighting is used for

intergrid transfers. The space parallelism enters through the elimination of certain off-diagonal

blocks of the ILU factorization. The code was originally written for the Intel Hypercube by
Horton [9].

The communication patterns and the amount of traffic vary with the allocation of available

processors between space and time, as well as with the refinement of the spatial grid, with

the result that in this second application a wide range of message sizes, message numbers

28

and message patterns are observed, depending on three factors: the number of physical time

steps simultaneously solved for, the number of domain partitions, and the number of spatial

coarsening levels. The most important observation about the computation and communication

complexity, however, is that their asymptotic sizes are of equal order. Consider the purely time

parallel limit of p planes of n × n gridpoints. Transferring the full plane of data between time

levels is an O(n 2) operation, which is the same as the O(n 2) arithmetic complexity of the

stencil operations of residual evaluation and ILU smoothing in the fine grid sweep of the MG
algorithm.

5.2.2 Implementation

In Figure 18, we show the main patterns of communication generated between processors

assigned to different time-steps ("in time") and between processors assigned to the same time

step ("in space"), p_ is the number of grid partitions (pz processors are assigned to solving the

problem for every time step), while pt is the number of consecutive time steps (Pt is the number

of groups of p_ processors, each group operating on a different time step). Global operations are

not shown in Figure 18; in general, their number is not constant, depending off the number of

grid levels (kept fixed) and on the factorization ofp into p_ × Px. The large messages are those

carrying grid information (labeled G in the figure) between processors assigned to different

time steps. The size of these messages decreases as px increases, for a constant number of time

steps pt, as the individual space domains are partitioned over more processors. For a given

number of available processors, the size of the messages increases with pt, as the space grid

partitions become larger. The messages labeled "Itt" and "IL" carry vectors of edge data right

and left across spatial processor boundaries in the stripwise decomposition shown.

2

! G

G

G

6

G

8

7

G

G

,Lr!11 12

Figure 18: Principal communication patterns for a single time step in the MG code, featuring
both time (pt = 3) and strip.based space (p_ = 4) parallelism for p = 12 processors.

Figure 19 shows experimental versus predicted timings, for p_ = 1 and pt between 2 and

12. There are two predicted curves: one for when all the communication operations are

synchronized (and therefore the contention on the communication network is maximum), and

one for the idealized case of no contention. For more than three workstation processors, the

29

network (as opposed to the processing overhead) is the communication bottleneck and thus the

communication time increases linearly with the number of processors. On the other hand, for

two processors the processing overhead represents the actual communication bottleneck and

therefore the communication time does not increase at the same rate between two and three

processors as in the other cases. This effect was anticipated at the end of section 4.

The measured communication time is bounded by the limits of the zero and maximal con-

tention predicted curves. The difference between the maximal contention prediction and the

actual communication time is due primarily to the lack of synchronization. The estimated

communication times assume that all Uke messages are sent synchronously by all processors.

In practice, the processors do not finish the computation phase at the same time and therefore

the message sending is initiated at slightly staggered moments. This is due to slight work-
load imbalances and to nondeterministic factors that arise even when identical workstations

have the same amount of work to perform. The computation time is influenced by the cache

memory system, interrupt service, task switching and page swapping beyond the control of the
application.

As in the DD examples, we modify the application so that, before sending, all processors

are synchronized. The results obtained are also plotted against the predictions in Figure 19.

In the synchronous case, the measured data are very close to the predictions (within 17%).
Moreover, the difference should be even smaller if we could measure the real communication

times (To) and not just the sending times (T_). As a conclusion, the difference between the

predicted communication time and the actual results expresses in some way the degree of the

application synchronism. When the measured results are close to the synchronous predictions,

the processors send messages at almost the same moments in time, which results in greater
contention on the communication network and larger communication time.

In Figure 20 we consider different numbers of processors both in time and space. Since

the main data traffic occurs between consecutive planes, we do not consider the processors in

the last plane that only receive data. Between processors in the same plane a large number of

smaR messages (several hundreds) are exchanged. This enforces a "natural" synchronization

and, therefore, the time differences between the synchronized and non-synchronized (original)
version of the application are smaller. This can be observed, especially, when processors in

only one plane have to send data, i.e. Pt --- 2. On the other hand, for Pt -- 4 there are 3 planes

that concurrently send data in time: plane 1 to plane 2, plane 2 to plane 3 and plane 3 to

plane 4. Since the messages exchanged in the same plane synchronize only with processors

in that plane, the processors in different planes are not so tightly synchronized and therefore

the differences between the synchronized and non-synchronized version of the application are
larger.

5.3 Discussion

Each of the two applications above gives rise to a small set of communication subprograms,

such as global reduction or exchange of surface (resp., volume) data between spatially (resp.,

temporally) neighboring processors. These subprograms are called with message sizes ranging

from one word to the order of the number of words of data in the problem. The hyperbolic

model performs well for each communication subprogram class. It even has some value (see
Figure 16) in predicting measurements averaged over all of the different communication sub-

programs in the algorithmically correct proportions.

3O

iii!_

1.6e+07

1.4e+07

1.2e+07

le+07
time (usec)

8e+06

6e+06

4e+OO

2e+06

0
2

I I I I

predicted (total comm. overlap)
predicted (no comm. overlap)

measured (native, asynchronous)
measured (synchronous)

I I I I

4 6 8 10 12
number of processors

Figure 19: Predicted sending times (Ts) for two eztreme cases of zero contention on the commu-

nication network (no communication overlap) and maximum contention on the communication

network (full communication overlap) versus the measured sending times for both the native

MG code and the artificially synchronized version of the code. These results are for mazimal

time parallelism (p= = 1 and Pt : p) which leads to the largest average message size.

Pz Pt

2 9.

4

4 2

pred. (no ovlp.) pred. (total ovlp.) meas. (async) meas. (sync)

925,480 1,374,963 1,137,562 1,264,402

925,480 3,162,400 2,110,917 2,616,590

509,125 1,343,780 I,158,536 1,273,106

Figure 20: Predicted and measured sending times (in microseconds) for one multigrid V-cycle,

for varying degrees of time and space parallelism, using either _ or 8 processors.

31

One of the applications (time-parallel multigrld) is limited by network contention, while

the other application (domain decomposition) is limited only by irregularities in computation

time and frequent synchronization. Both limitations are serious as regards scalability, partic-

ularly in cluster computing environments without dedicated nodes. Future algorithmic design

should be heavily influenced by such communication analyses. In particular, the inner product

operations used to drive the conjugate gradient iterations are particularly burdensome and

their synchronization cost should be reduced by algorithmic variants that block several consec-

utive iterations into one set of global reduction operations. Indeed, the synchronization costs

of conjugate-gradient-type methods may lead to a resurgence of interest in Chebyshev-like
methods.

The modifications made to the original applications programs to produce artificial syn-

chrony are for purposes of demonstrating the ability of the hyperbolic model to predict con-
tention, only, and are not recommended in production versions.

Tests on architectures other than Ethernet Sparcstation clusters, with message-passing

protocols other than p4, using applications other than domain decomposition and time-parallel

multigrid are planned, to further define the range of applicability of the hyperbolic model.

6 The LogP Model

Recently, a new model of parallel computational complexity for massively parallel processors,

called LogP, has been developed at Berkeley [4]. The underlying architecture consists of mod-

ules connected by a communication network. A module contains a processor, a local memory

and a network interface. The model assumes that send and receive operations are performed by
the main processor, i.e. there is not a specialized processor to perform network interface func-

tions. This means that during the send or receive operations the processor does not perform

any other computation. The basic version of the LogP model assumes that all messages have

the same size and that this size is small. The model is characterized by four main parameters:

1. L - the upper bound for the delay of a message transmission between the source and
destination processors.

2. o - the time interval required to send or receive a message. During this time the processor
cannot perform any other operations.

3. g - the gap, defined as the minimum time interval between two consecutive message
transmissions or receptions.

4. P - the number of modules.

When a small message is sent, according to the LogP model, the communication time is

equal to the sending overhead o, plus the delay time L, plus the receiving overhead o, i.e.

2o + L. On the other hand, when more than one message is sent by the same processor, a new

message cannot be issued earlier than max(g, o) and, therefore, the communication time to

send n consecutive messages is (n - 1) max(g, o) + 20 + L. The first term accounts for sending

the first n - 1 messages, while the last two account for sending the last message (see Figure

21). Since for n = 1 the second expression is reduced to the first, we consider further only the
second one.

32

ii

iii!

_ i : ii::: _:: i i •ii: _, _: ! _i_

PO '

P1

g , g_ , g ,

o \\L o \L o _L o \\L

_ , , 0 |

time

Figure 21: The time diagram for sending .l consecutive messages, from PO to P1, in the LogP

model. Here, g > o.

To capture the LogP parameters in the hyperbolic model we use the communication graph

from Figure 9, where aw = bw = o, a/_ = L,bL = 0 and ac = 0,be = g. Since the LogP

model assumes that allmessages are of a small fixedsize,these willbe interpretedas packets

in the hyperbolic model, while consecutivemessages sent by one processor (in LogP) willbe

interpretedas packets of a singlemessage. Also, because allpackets are of the same size,we

take the sizeof the data unit and the packet sizeto be the same (i.e.each packet contains

exactlyone data unit).By applying rule1 to the communication graph, itiseasy to see that the

equivalent communication block has the following parameters: a = aw + ae + a£, + aw = 20+ L

and b = max(bw, be, bL) = max(g, o). The total service time is given by (15).

When we write x --+ 0 in the hyperbolic model, we are referring to the smallest possible

size of a message that can be sent, which can generally be much smaller than the packet size.

However, in this case, a packet consists of exactly one data unit (corresponding to a message in

LogP) and therefore a message cannot be of a size smaller than a packet size. To accommodate

this restriction within the formalism of the hyperbolic model, we take x = n - 1, where n is

the size of the message. Thus, x --+ 0 in the hyperbolic model and n = 1 in the LogP model

refer to the identical limit, namely that of the smallest message that can be sent. Next, if we

denote by Thvv(n) (= T(n - 1; a, b)) the communication time to send a message of size n in the

hyperbolic model and by TLoap(n) the communication time to send n consecutive messages in
LogP model, we obtain:

a 2

Thvv(n) = a + (n -- 1)b + (n- 1)b; TLo v(n) = a + (n - a)b.

To see how much the estimated communication times for both models may differ, we consider
the ratio Thw(n)/TLoap(n):

a 2 +(n-- 1)ab+(n- 1)2b 2

a 2 + 2(n- 1)ab+(n- 1)2b 2"

It is easy to verify that for any value of n _> 1 and nonnegative a and b, we have:

3 Thuv(n)
- < < 1. (18)4 - TLoap(n) .

Further, let us compute the sending (resp., receiving) time, i.e. the actual time required

by a processor to send (resp., receive) n consecutive messages, for both models. For the

LogP model, clearly, we have (see Figure 21) Ta..1,out,(n) - Tr._,ogl_,(n) - no. Next, notice

that if g > o, after a message is sent, the processor is free for time g - o to perform other

computations. Since we have interpreted consecutive messages sent by the same processor

33

in the LogP model as packets of a single message in the hyperbolic model, between any two

consecutive packets sent or received in the hyperbolic model, the processor can perform other

computations. Therefore, the equivalent sending and receiving primitives of the hyperbolic

model are preemptive. From Figure 8 we thus have:

= =
0 2 o

+(n--1)o----+(n--1)o.
o + (n -- 1)o n

To further quantify the difference between sending/receiving communication times estimated

by both models, we form Ts_hup/Ts..LogP (Tr..hup/Tr..I.,ogP):

T__hu___________p_ 1 n- 1
Ts..bo gP n 2

which gives us the following bounds for n >_ 1:

3 Ts_hup(n)
- < < I. (19)
4 -- Ts..Loap(n) --

7 Conclusions

A two-parameter hyperbolic model for parallel communication complexity on general dedicated

networks has been proposed and validated by experiments with test programs containing com-

munication patterns frequently encountered in scientific computations. Because of the way its

parameters are fit to experiments, the model captures both small-message and large-message

timing behavior well. The quality of agreement between model and measurement at intermedi-

ate message sizes suggests that two parameters are adequate. Each communication pattern, in

principle, requires its own set of parameters. The practical utility of the model in unstructured

computations may therefore be limited. Fortunately, many scientific computations calling for

parallel supercomputing rely on a small number of structured communication patterns, so the
hyperbolic model is tractable.

In the limit of small uniform messages that affords direct comparison with the state-of-

the-art LogP model, appropriate for tightly coupled architectures, the hyperbolic and LogP
models predict the same timings for elementary communication operations to within a factor
of 3/4.

The model can be used to provide insight into communication performance of actual dis-

tributed scientific applications. A domain decomposition code for solving elliptic PDEs and a

time-parallel multigrid method for transient simulation of Navier-Stokes cavity flow are chosen

for demonstration purposes, because of their different synchronization/communication ratios

and complementary communication patterns. Complementary bottlenecks to scalability are
thus identified. Realistic analyses of communication such as these can be used to influence

algorithmic design, for a given architecture, and vice versa.

8 Acknowledgements

The cooperation of ICASE scientists in providing dedicated use of a subset of their Sparcstation

Ethernet for the experiments is appreciated. The authors have benefited from many discussions

with Prof. Chet Grosch of Old Dominion University, and from a key working session with Prof.

34

!ii

ii_ill

li ?

t_oger Hockney while a visitor at Old Dominion. Two of the authors of the LogP model have

been helpful in clarifying aspects of our comparisons in Section 6 (though these comparisons

should not be presumed definitive, insofar as the LogP authors are concerned). Finally, the

generosity of Prof. Graham Horton of the University of Erlangen in donating his code, as well

as his time in explMning the time-parallel MG Mgorithm, is worthy of special acknowledgement!

35

<

{
• , i ¸_ (• • <: > ;+•-:!:!?]: i.!!!:!:<_!;>:i L

::/! iil,il i _,___<_:i<(iiiiii_iiliili<Ai

References

[1] J. H. Bramble, J. E. Pasciak and A. H. Schatz, The construction of preconditioners for

elliptic problems by substrueturing, I, Math. Comp., 47:103-134, 1986.

[2] I{. Butler and E. Lusk, Monitors, Messages, and Clusters: The P4 Parallel Programming

System, Argonne National Laboratory MCS Div. preprint P362-0493, and J. Parallel Corn-

put., to appear.

[3] D. D. Clark, Van Jacobson, J. Romkey, H. Salwen, An Analysis of TCP Processing Over-

head, IEEE Communications, pp. 23-29, June 1989.

[4] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.. Subramonian

and T. von Eicken, LogP: Towards a Realistic Model of Parallel Computation, SIGPLAN
Notices, 28:1-12, 1993.

[5] R. Cypher and E. Leu, The semantics of blocking and nonblocking send and receive primi-

tives, in Proceedings of the International Parallel Processing Symposium '94, Cancun, Mex-

ico, IEEE Press, Los Alamitos, CA, pp. 729-735, 1994.

[6] S. Fortune and J. Wyllie, Parallelism in Random Access Machines, in Proceedings of the

10th Annual Symposium on Theory of Computing, San Diego, CA, 1978, ACM Press, New
York, pp. 114-.!18, 1978.

[7] W. D. Gropp and D. E. Keyes, Domain Decomposition on Parallel Computers, Impact of

Computing in Science and Engineering, 1:421-439, 1989.

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quantitative Approach,
Morgan Kauffman, San Mateo, CA, 1990.

[9] G. Horton, Time-parallelism for the massively parallel solution of parabolic PDEs, in Ap-

plications of High Performance Computers in Science and Engineering, Computational Me-

chanics Publications, Southampton (UK), December 1994 (to appear).

[10] G. Horton and S. Vandewalle, A Space-Time Multigrid Method for Parabolic PDEs, Report

6/93, IMMD 3, Universitaet Erlangen, July 1993 (to appear in SIAM J. Sci. Comput.).

[11] D. E. Keyes, Domain Decomposition: A Bridge Between Nature and Parallel Computers,

in "Adaptive, Multilevel and Hierarchical Computational Strategies" (A. K. Noor, ed.),
ASME, New York, pp. 293-334, 1992.

[12] D. E. Keyes and W. D. Gropp, A Comparison of Domain Decomposition Techniques for

Elliptic Partial Equations and their Parallel Implementation, SIAM J. Sci. Stat. Comput.,
8:s166-s202, 1987.

[13] S. T. Leutenegger and X.-H. Sun, Distributed Computing Feasibility in a Non-dedicated

Homogeneous Distributed System, Proc. of Supercomputing'93, Portland, OR., IEEE Com-
puter Society Press, pp. 143-152, 1993.

[14] K. Maly, S. Khanna, E. C. Foudriat, C. M. Overstreet, I_. Mukkamala, M. Zubair, It.

Yerraballi, D. Sudheer, Parallel Communications: An Experimental Study, T1%93-20 Dept.
of Comp. Sci., Old Dominion Univ., 1993.

36

[15] K. K, Ramakrishnan,Performance studies in designing Network Interfaces: A Case Study,

in Proceedings of the 4th IFIP Conference on High Performance Networking '92, (A Dan-

thine, O. SpanioI, eds.). Int. Fed. for Information Processing, pp.F3-1 - F3-15, 1992.

[16] W. Stallings, Data and Computer Communications, Macmillan, New York, 1991.

[17] W. It. Stevens, TCP/IP Illustrated, Volume I: The Protocols, Addison-Wesley, Reading
(MA), 1994.

[18] L. H. Turcotte, A Survey of Software Environments for Exploiting Networked Computing

Resources, Technical Report, Engineering Res. Ctr. for Computational Field Simulation,
Mississippi State Univ., June, 1993.

37

: _ /_:-9<:/: ••: 7 ¸¸¸

REPORT DOCUMENTATION PAGE FormApp d
OMB No. 0704-0188

Public reporting burden for this collection of information is est mated to average i hour per response, including the time for reviewing instructions, searching existing data sources.

gathering and maintainin_ the data needed, and comp eting and reviewing the collection of information. Send comments reEarding this burden estimate or an other as ect of this
collection ofjnformation ncluding suggest ons for reduc ng th s burden to Washinrton Headouarter_ <;_rvi_ r_ _=- -t- Y . ^ P-

• " • - • v 1 - , _,._=u.._© _u. mlurma¢lon uperauons and _<eports,]_lb Jefferson

Day s H=ghway, Suite 1204. Arhngton. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1994 Contractor Re)ort

4. TITLE AND SUBTITLE !5. FUNDING NUMBERS

A SIMPLE HYPERBOLIC MODEL FOR COMMUNICATION IN
PARALLEL PROCESSING ENVIRONMENT

6. AUTHOR(S)

Ion Stoica

Florin Sultan

David Keyes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING�MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N_tional Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

ll. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report

To be submitted to Journal of Parallel and Distributed Computing

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 94-78

10. SPONSORING�MONITORING
AGENCY REPORT NUMBER

NASA CR-194984

ICASE Report No. 94-78

]2b. DISTRIBUTION CODE

Subject Category 60, 61

13. ABSTRACT (Maximum 200 words)

We introduce a model for communication costs in parallel processing environments, called the "hyperbolic model,"

which generalizes two-parameter dedicated-link models in an analytically simple way. Dedicated interprocessor

finks parameterized by a latency and a transfer rate that are independent of load are assumed by many existing
communication models; such models are unrealistic for workstation networks. The communication system is modeled

as a directed communication graph in which terminal nodes represent the application processes that initiate the

sending and receiving of the information and in which internal nodes, called communication blocks (CBs), reflect

the layered structure of the underlying communication architecture. The direction of graph edges specifies the flow

of the information carried through messages. Each CB is characterized by a two-parameter hyperbolic function of

the message size that represents the service time needed for processing the message. The parameters are evaluated

in the limits of very large and very small messages. Rules are given for reducing a communication graph consisting
of many to an equivalent two-parameter form, while maintaining an approximation for the service time that is

exact in both large and small limits. The model is validated on a dedicated Ethernet network of workstations by

experiments with communication subprograms arising in scientific applications, for which a tight fit of the model

predictions with actual measurements of the communication and synchronization time between end processes is

demonstrated. The model is then used to evaluate the performance of two simple parallel scientific applications from

partial differential equations: domain decomposition and time-parallel multigrid. In an appropriate limit, we also

show the compatibility of the hyperbolic model with the recently proposed LogP model.
Iii

14. SUBJECT TERMS

communication modeling, parallel processing for partial differential equations, cluster
computing, workstation networks

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified
NSN

I 18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

]_U.S. GOVERNMENT PRINTING Ot_ICE: 1994 - 628-064/23062

15. NUMBER OF PAGES

41

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

Standard Form298(Rev. 2-89)
Prescribedby ANSI Std. Z39-18
298-102

:if!

_ _ -i• i _i i_: • :i i_ i,ii:_ili
i :i::ii:i):, i!i!i !)iii!?i iiiiii

